Sustainable remediation and redevelopment of brownfield sites

Sustainable remediation and redevelopment of brownfield sites
  • World Urbanization Prospects, The 2018 Revision, ST/ESA/SER.A/420 (UN Department of Economic and Social Affairs, 2019).

  • Adams, D., De Sousa, C. & Tiesdell, S. Brownfield development: a comparison of North American and British approaches. Urban. Stud. 47, 75–104 (2010).

    Article 

    Google Scholar
     

  • Overview of EPA’s Brownfields Program. USEPA https://www.epa.gov/brownfields/overview-epas-brownfields-program (2022).

  • Remediation Management of Complex Sites (Interstate Technology and Regulatory Council, 2017).

  • McHugh, T., Loll, P. & Eklund, B. Recent advances in vapor intrusion site investigations. J. Environ. Manage. 204, 783–792 (2017).

    Article 

    Google Scholar
     

  • Lemming, G., Hauschild, M. Z. & Bjerg, P. L. Life cycle assessment of soil and groundwater remediation technologies: literature review. Int. J. Life Cycle Assess. 15, 115–127 (2010).

    Article 

    Google Scholar
     

  • Haninger, K., Ma, L. & Timmins, C. The value of brownfield remediation. J. Assoc. Environ. Resour. Econ. 4, 197–241 (2017).


    Google Scholar
     

  • Pasetto, R., Mattioli, B. & Marsili, D. Environmental justice in industrially contaminated sites. A review of scientific evidence in the WHO European Region. Int. J. Environ. Res. Public Health 16, 998 (2019).

    Article 

    Google Scholar
     

  • Downey, L. & Hawkins, B. Race, income, and environmental inequality in the United States. Sociol. Perspect. 51, 759–781 (2008).

    Article 

    Google Scholar
     

  • Assessing Global Land Use: Balancing Consumption with Sustainable Supply. A Report of the Working Group on Land and Soils of the International Resource Panel (UNEP, 2014).

  • Roadmap to a Resource Efficient Europe, COM(2011) 571 final (European Commission, 2011).

  • Bartke, S. & Schwarze, R. No perfect tools: trade-offs of sustainability principles and user requirements in designing support tools for land-use decisions between greenfields and brownfields. J. Environ. Manage. 153, 11–24 (2015).

    Article 

    Google Scholar
     

  • Hou, D. & Al-Tabbaa, A. Sustainability: a new imperative in contaminated land remediation. Environ. Sci. Policy 39, 25–34 (2014).

    Article 

    Google Scholar
     

  • Smith, J. W. Debunking myths about sustainable remediation. Remediation 29, 7–15 (2019).

    Article 

    Google Scholar
     

  • Green and Sustainable Remediation: State of the Science and Practice (Interstate Technology and Regulatory Council, 2011).

  • Superfund Remedy Report, 16th edition (USEPA, 2020).

  • Ellis, D. E. & Hadley, P. W. Sustainable remediation white paper — integrating sustainable principles, practices, and metrics into remediation projects. Remediation 19, 5–114 (2009).

    Article 

    Google Scholar
     

  • Hou, D., Al-Tabbaa, A., Guthrie, P. & Hellings, J. Using a hybrid LCA method to evaluate the sustainability of sediment remediation at the London Olympic Park. J. Clean. Prod. 83, 87–95 (2014).

    Article 

    Google Scholar
     

  • O’Connor, D. & Hou, D. in Sustainable Remediation of Contaminated Soil and Groundwater: Materials, Processes, and Assessment (ed. Hou, D.) 43–73 (Butterworth-Heinemann/Elsevier, 2020).

  • Beames, A., Broekx, S., Lookman, R., Touchant, K. & Seuntjens, P. Sustainability appraisal tools for soil and groundwater remediation: How is the choice of remediation alternative influenced by different sets of sustainability indicators and tool structures? Sci. Total Environ. 470, 954–966 (2014).

    Article 

    Google Scholar
     

  • Hou, D. et al. Climate change mitigation potential of contaminated land redevelopment: a city-level assessment method. J. Clean. Prod. 171, 1396–1406 (2018).

    Article 

    Google Scholar
     

  • Nagengast, A., Hendrickson, C. & Lange, D. Commuting from US brownfield and greenfield residential development neighborhoods. J. Urban. Plan. Dev. 137, 298–304 (2011).

    Article 

    Google Scholar
     

  • Green Remediation: Incorporating Sustainable Environmental Practices into Remediation of Contaminated Sites (USEPA, 2008).

  • Surf-UK: A Framework for Assessing the Sustainability of Soil and Groundwater Remediation (Contaminated Land: Applications in Real Environments (CL:AIRE), 2010).

  • Harclerode, M. et al. Integrating the social dimension in remediation decision‐making: state of the practice and way forward. Remediation 26, 11–42 (2015).

    Article 

    Google Scholar
     

  • Dillon, L. Race, waste, and space: brownfield redevelopment and environmental justice at the Hunters Point shipyard. Antipode 46, 1205–1221 (2014).

    Article 

    Google Scholar
     

  • Wu, Z. Investigating Changzhou Toxic site for schooling: improper construction practice and delayed soil remediation Project. CNR News (2016).

  • Cappuyns, V. Inclusion of social indicators in decision support tools for the selection of sustainable site remediation options. J. Environ. Manage. 184, 45–56 (2016).

    Article 

    Google Scholar
     

  • Huysegoms, L. & Cappuyns, V. Critical review of decision support tools for sustainability assessment of site remediation options. J. Environ. Manage. 196, 278–296 (2017).

    Article 

    Google Scholar
     

  • Bardos, P., Lazar, A. & Willenbrock, N. A Review of Published Sustainability Indicator Sets: How Applicable Are They to Contaminated Land Remediation Indicator-Set Development? (Contaminated Land: Applications in Real Environments (CL:AIRE), 2009).

  • Pizzol, L. et al. Timbre Brownfield Prioritization Tool to support effective brownfield regeneration. J. Environ. Manage. 166, 178–192 (2016).

    Article 

    Google Scholar
     

  • Bardos, R. P. et al. Optimising value from the soft re-use of brownfield sites. Sci. Total Environ. 563, 769–782 (2016).

    Article 

    Google Scholar
     

  • A Guide to Developing and Documenting Cost Estimates During the Feasibility Study (USEPA, 2000).

  • Squires, G. & Hutchison, N. Barriers to affordable housing on brownfield sites. Land Use Policy 102, 105276 (2021).

    Article 

    Google Scholar
     

  • Bartke, S. et al. Targeted selection of brownfields from portfolios for sustainable regeneration: user experiences from five cases testing the Timbre Brownfield Prioritization Tool. J. Environ. Manage. 184, 94–107 (2016).

    Article 

    Google Scholar
     

  • Thornton, G., Franz, M., Edwards, D., Pahlen, G. & Nathanail, P. The challenge of sustainability: incentives for brownfield regeneration in Europe. Environ. Sci. Policy 10, 116–134 (2007).

    Article 

    Google Scholar
     

  • Carroll, D. A. & Eger, R. J. III Brownfields, crime, and tax increment financing. Am. Rev. Public Adm. 36, 455–477 (2006).

    Article 

    Google Scholar
     

  • Damigos, D. & Kaliampakos, D. Assessing the benefits of reclaiming urban quarries: a CVM analysis. Landsc. Urban Plann. 64, 249–258 (2003).

    Article 

    Google Scholar
     

  • Gamper-Rabindran, S. & Timmins, C. Does cleanup of hazardous waste sites raise housing values? Evidence of spatially localized benefits. J. Environ. Econ. Manage. 65, 345–360 (2013).

    Article 

    Google Scholar
     

  • Office of Land and Emergency Management (OLEM) Program Benefits. USEPA https://www.epa.gov/aboutepa/office-land-and-emergency-management-olem-program-benefits (2022).

  • Redevelopment Economics at Superfund Sites. USEPA https://www.epa.gov/superfund-redevelopment/redevelopment-economics-superfund-sites (2022).

  • Söderqvist, T. et al. Cost-benefit analysis as a part of sustainability assessment of remediation alternatives for contaminated land. J. Environ. Manage. 157, 267–278 (2015).

    Article 

    Google Scholar
     

  • Glumac, B., Han, Q. & Schaefer, W. F. Actors’ preferences in the redevelopment of brownfield: latent class model. J. Urban. Plan. Dev. 141, 04014017 (2015).

    Article 

    Google Scholar
     

  • Ameller, J., Rinaudo, J.-D. & Merly, C. The contribution of economic science to brownfield redevelopment: a review. Integr. Environ. Assess. Manag. 16, 184–196 (2020).

    Article 

    Google Scholar
     

  • Li, X. et al. Using a conceptual site model for assessing the sustainability of brownfield regeneration for a soft reuse: a case study of Port Sunlight River Park (UK). Sci. Total Environ. 652, 810–821 (2019).

    Article 

    Google Scholar
     

  • A Citizen’s Guide to Solidification and Stabilization, EPA 542-F-12-019 (USEPA, 2012).

  • Andrew, R. M. Global CO2 emissions from cement production. Earth Syst. Sci. Data 10, 195–217 (2018).

    Article 

    Google Scholar
     

  • Wang, L. et al. Green remediation of As and Pb contaminated soil using cement-free clay-based stabilization/solidification. Environ. Int. 126, 336–345 (2019).

    Article 

    Google Scholar
     

  • Abdalqader, A. F., Jin, F. & Al-Tabbaa, A. Development of greener alkali-activated cement: utilisation of sodium carbonate for activating slag and fly ash mixtures. J. Clean. Prod. 113, 66–75 (2016).

    Article 

    Google Scholar
     

  • McLellan, B. C., Williams, R. P., Lay, J., Van Riessen, A. & Corder, G. D. Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement. J. Clean. Prod. 19, 1080–1090 (2011).

    Article 

    Google Scholar
     

  • Hou, D., Al-Tabbaa, A. & Hellings, J. Sustainable site clean-up from megaprojects: lessons from London 2012. In Proceedings of the Institution of Civil Engineers-Engineering Sustainability, 61–70 (Thomas Telford, 2022).

  • Capobianco, O., Costa, G. & Baciocchi, R. Assessment of the environmental sustainability of a treatment aimed at soil reuse in a brownfield regeneration context. J. Ind. Ecol. 22, 1027–1038 (2018).

    Article 

    Google Scholar
     

  • Palansooriya, K. N. et al. Soil amendments for immobilization of potentially toxic elements in contaminated soils: a critical review. Environ. Int. 134, 105046 (2020).

    Article 

    Google Scholar
     

  • Haynes, R. J. & Naidu, R. Influence of lime, fertilizer and manure applications on soil organic matter content and soil physical conditions: a review. Nutr. Cycl. Agroecosyst. 51, 123–137 (1998).

    Article 

    Google Scholar
     

  • Chan, K. Y. & Heenan, D. P. Lime-induced loss of soil organic carbon and effect on aggregate stability. Soil. Sci. Soc. Am. J. 63, 1841–1844 (1999).

    Article 

    Google Scholar
     

  • Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R. & Polasky, S. Agricultural sustainability and intensive production practices. Nature 418, 671–677 (2002).

    Article 

    Google Scholar
     

  • Kong, X. et al. Super-stable mineralization of cadmium by calcium-aluminum layered double hydroxide and its large-scale application in agriculture soil remediation. Chem. Eng. J. 407, 127178 (2021).

    Article 

    Google Scholar
     

  • Wang, L. et al. Biochar composites: emerging trends, field successes, and sustainability implications. Soil. Use Manag. 38, 14–38 (2022).

    Article 

    Google Scholar
     

  • Tang, J., Zhu, W., Kookana, R. & Katayama, A. Characteristics of biochar and its application in remediation of contaminated soil. J. Biosci. Bioeng. 116, 653–659 (2013).

    Article 

    Google Scholar
     

  • Wang, L. et al. Role of biochar toward carbon neutrality. Carbon Res. 2, 2 (2023).

    Article 

    Google Scholar
     

  • He, M. et al. A critical review on performance indicators for evaluating soil biota and soil health of biochar-amended soils. J. Hazard. Mater. 414, 125378 (2021).

    Article 

    Google Scholar
     

  • Blanco-Canqui, H. Does biochar improve all soil ecosystem services? GCB Bioenergy 13, 291–304 (2021).

    Article 

    Google Scholar
     

  • Yaashikaa, P. R., Kumar, P. S., Varjani, S. & Saravanan, A. A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy. Biotechnol. Rep. 28, e00570 (2020).

    Article 

    Google Scholar
     

  • Hou, D. Sustainable remediation in China: elimination, immobilization, or dilution. Environ. Sci. Technol. 55, 15572–15574 (2021).

    Article 

    Google Scholar
     

  • Wang, L. et al. Field trials of phytomining and phytoremediation: a critical review of influencing factors and effects of additives. Crit. Rev. Environ. Sci. Technol. 50, 2724–2774 (2020).

    Article 

    Google Scholar
     

  • Pilon-Smits, E. Phytoremediation. Annu. Rev. Plant. Biol. 56, 15–39 (2005).

    Article 

    Google Scholar
     

  • Batty, L. C. & Dolan, C. The potential use of phytoremediation for sites with mixed organic and inorganic contamination. Crit. Rev. Environ. Sci. Technol. 43, 217–259 (2013).

    Article 

    Google Scholar
     

  • Hou, D. et al. Metal contamination and bioremediation of agricultural soils for food safety and sustainability. Nat. Rev. Earth Environ. 1, 366–381 (2020).

    Article 

    Google Scholar
     

  • Vocciante, M. et al. Enhancements in phytoremediation technology: environmental assessment including different options of biomass disposal and comparison with a consolidated approach. J. Environ. Manage. 237, 560–568 (2019).

    Article 

    Google Scholar
     

  • Contreras, Á. et al. A poplar short-chain dehydrogenase reductase plays a potential key role in biphenyl detoxification. Proc. Natl Acad. Sci. USA 118, e2103378118 (2021).

    Article 

    Google Scholar
     

  • Cary, T. J. et al. Field trial demonstrating phytoremediation of the military explosive RDX by XplA/XplB-expressing switchgrass. Nat. Biotechnol. 39, 1216–1219 (2021).

    Article 

    Google Scholar
     

  • Song, Y. et al. Nature based solutions for contaminated land remediation and brownfield redevelopment in cities: a review. Sci. Total Environ. 663, 568–579 (2019).

    Article 

    Google Scholar
     

  • Bolan, N. S., Park, J. H., Robinson, B., Naidu, R. & Huh, K. Y. Phytostabilization. A green approach to contaminant containment. Adv. Agron. 112, 145–204 (2011).

    Article 

    Google Scholar
     

  • Stroo, H. & Ward, C. H. In Situ Remediation of Chlorinated Solvent Plumes (Springer, 2010).

  • Minjune, Y., D, A. M. & W, J. J. Back diffusion from thin low permeability zones. Environ. Sci. Technol. 49, 415–422 (2015).

    Article 

    Google Scholar
     

  • Barros, F., Fernàndez‐Garcia, D., Bolster, D. & Sanchez‐Vila, X. A risk‐based probabilistic framework to estimate the endpoint of remediation: concentration rebound by rate‐limited mass transfer. Water Resour. Res. 49, 1929–1942 (2013).

    Article 

    Google Scholar
     

  • Crofts, T. S. et al. Shared strategies for β-lactam catabolism in the soil microbiome. Nat. Chem. Biol. 14, 556–564 (2018).

    Article 

    Google Scholar
     

  • Huang, S. & Jaffé, P. R. Defluorination of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) by Acidimicrobium sp. strain A6. Environ. Sci. Technol. 53, 11410–11419 (2019).

    Article 

    Google Scholar
     

  • Rogers, J. D., Ferrer, I., Tummings, S. S., Bielefeldt, A. R. & Ryan, J. N. Inhibition of biodegradation of hydraulic fracturing compounds by glutaraldehyde: groundwater column and microcosm experiments. Environ. Sci. Technol. 51, 10251–10261 (2017).

    Article 

    Google Scholar
     

  • Introduction to In-situ Bioremediation of Groundwater, 542-R-13-018 (USEPA, 2013).

  • Ottosen, C. B. et al. Assessment of chlorinated ethenes degradation after field scale injection of activated carbon and bioamendments: application of isotopic and microbial analyses. J. Contam. Hydrol. 240, 103794 (2021).

    Article 

    Google Scholar
     

  • Sinha, R. K., Valani, D., Sinha, S., Singh, S. & Herat, S. in Solid Waste Management and Environmental Remediation (eds Faerber, T. & Herzog, J.) (Nova Science, 2009).

  • Prior, J. Factors influencing residents’ acceptance (support) of remediation technologies. Sci. Total Environ. 624, 1369–1386 (2018).

    Article 

    Google Scholar
     

  • Lemming, G. et al. Environmental impacts of remediation of a trichloroethene-contaminated site: life cycle assessment of remediation alternatives. Environ. Sci. Technol. 44, 9163–9169 (2010).

    Article 

    Google Scholar
     

  • Vigil, M., Marey-Pérez, M. F., Huerta, G. M. & Cabal, V. Á. Is phytoremediation without biomass valorization sustainable? Comparative LCA of landfilling vs. anaerobic co-digestion. Sci. Total Environ. 505, 844–850 (2015).

    Article 

    Google Scholar
     

  • Espada, J. J., Rodriguez, R., Gari, V., Salcedo-Abraira, P. & Bautista, L. F. Coupling phytoremediation of Pb-contaminated soil and biomass energy production: a comparative life cycle assessment. Sci. Total Environ. 840, 156675 (2022).

    Article 

    Google Scholar
     

  • Jiang, S. J. et al. Emerging disposal technologies of harmful phytoextraction biomass (HPB) containing heavy metals: a review. Chemosphere 290, 133266 (2022).

    Article 

    Google Scholar
     

  • Toth, C. R. et al. Anaerobic benzene biodegradation linked to the growth of highly specific bacterial clades. Environ. Sci. Technol. 55, 7970–7980 (2021).

    Article 

    Google Scholar
     

  • Cadotte, M., Deschênes, L. & Samson, R. Selection of a remediation scenario for a diesel-contaminated site using LCA. Int. J. Life Cycle Assess. 12, 239–251 (2007).

    Article 

    Google Scholar
     

  • Sondergaard, G. L., Binning, P. J., Bondgaard, M. & Bjerg, P. L. Multi-criteria assessment tool for sustainability appraisal of remediation alternatives for a contaminated site. J. Soils Sed. 18, 3334–3348 (2018).

    Article 

    Google Scholar
     

  • Technical and Regulatory Guidance for In Situ Chemical Oxidation of Contaminated Soil and Groundwater, 2nd edition (Interstate Technology and Regulatory Council, 2005).

  • Hou, D., Al-Tabbaa, A. & Luo, J. Assessing effects of site characteristics on remediation secondary life cycle impact with a generalized framework. J. Environ. Plan. Manage. 57, 1083–1100 (2014).

    Article 

    Google Scholar
     

  • O’Carroll, D., Sleep, B., Krol, M., Boparai, H. & Kocur, C. Nanoscale zero valent iron and bimetallic particles for contaminated site remediation. Adv. Water Resour. 51, 104–122 (2013).

    Article 

    Google Scholar
     

  • Pak, T. et al. Pore-scale investigation of the use of reactive nanoparticles for in situ remediation of contaminated groundwater source. Proc. Natl Acad. Sci. USA 117, 13366–13373 (2020).

    Article 

    Google Scholar
     

  • Cao, Z. et al. Unveiling the role of sulfur in rapid defluorination of florfenicol by sulfidized nanoscale zero-valent iron in water under ambient conditions. Environ. Sci. Technol. 55, 2628–2638 (2021).

    Article 

    Google Scholar
     

  • Han, Y. & Yan, W. Reductive dechlorination of trichloroethene by zero-valent iron nanoparticles: reactivity enhancement through sulfidation treatment. Environ. Sci. Technol. 50, 12992–13001 (2016).

    Article 

    Google Scholar
     

  • O’Connor, D., Hou, D., Liu, Q., Palmer, M. R. & Varma, R. S. Nature-inspired and sustainable synthesis of sulfur-bearing Fe-rich nanoparticles. ACS Sustain. Chem. Eng. 8, 15791–15808 (2020).

    Article 

    Google Scholar
     

  • Hong, J., Wang, L., Lu, X. & Deng, D. Peroxide stabilizers remarkably increase the longevity of thermally activated peroxydisulfate for enhanced ISCO remediation. Water Res. 224, 119046 (2022).

    Article 

    Google Scholar
     

  • O’Connor, D. et al. Sustainable in situ remediation of recalcitrant organic pollutants in groundwater with controlled release materials: a review. J. Control. Rel. 283, 200–213 (2018).

    Article 

    Google Scholar
     

  • Garcia, A. N. et al. Sulfidated nano zerovalent iron (S-nZVI) for in situ treatment of chlorinated solvents: a field study. Water Res. 174, 115594 (2020).

    Article 

    Google Scholar
     

  • Wang, Y. et al. Green synthesis of nanoparticles for the remediation of contaminated waters and soils: constituents, synthesizing methods, and influencing factors. J. Clean. Prod. 226, 540–549 (2019).

    Article 

    Google Scholar
     

  • Mondal, P., Anweshan, A. & Purkait, M. K. Green synthesis and environmental application of iron-based nanomaterials and nanocomposite: a review. Chemosphere 259, 127509 (2020).

    Article 

    Google Scholar
     

  • O’Connor, D. et al. Biochar application for the remediation of heavy metal polluted land: a review of in situ field trials. Sci. Total Environ. 619, 815–826 (2018).

    Article 

    Google Scholar
     

  • Permeable Reactive Barriers: Lessons Learned/New Directions (Interstate Technology and Regulatory Council, 2005).

  • Bayer, P. & Finkel, M. Life cycle assessment of active and passive groundwater remediation technologies. J. Contam. Hydrol. 83, 171–199 (2006).

    Article 

    Google Scholar
     

  • Higgins, M. R. & Olson, T. M. Life-cycle case study comparison of permeable reactive barrier versus pump-and-treat remediation. Environ. Sci. Technol. 43, 9432–9438 (2009).

    Article 

    Google Scholar
     

  • Wilkin, R. T. et al. Geochemical and isotope study of trichloroethene degradation in a zero-valent iron permeable reactive barrier: a twenty-two-year performance evaluation. Environ. Sci. Technol. 53, 296–306 (2018).

    Article 

    Google Scholar
     

  • Mak, M. S. H. & Lo, I. M. C. Environmental life cycle assessment of permeable reactive barriers: effects of construction methods, reactive materials and groundwater constituents. Environ. Sci. Technol. 45, 10148–10154 (2011).

    Article 

    Google Scholar
     

  • Li, J. et al. Sustainable environmental remediation via biomimetic multifunctional lignocellulosic nano-framework. Nat. Commun. 13, 1–13 (2022).


    Google Scholar
     

  • Laramay, F. & Crimi, M. A sustainability assessment of an in situ ultrasonic reactor for remediation of PFAS-contaminated groundwater. Remediation 31, 59–72 (2020).

    Article 

    Google Scholar
     

  • Dixon, L. A. M. In the bleak mid-winter: the value of brownfield sites for birds during the winter. Urban. For. Urban Green. 75, 127690 (2022).

    Article 

    Google Scholar
     

  • Macgregor, C. J. et al. Brownfield sites promote biodiversity at a landscape scale. Sci. Total Environ. 804, 150162 (2022).

    Article 

    Google Scholar
     

  • Harrison, C. & Davies, G. Conserving biodiversity that matters: practitioners’ perspectives on brownfield development and urban nature conservation in London. J. Environ. Manage. 65, 95–108 (2002).

    Article 

    Google Scholar
     

  • Nature-Based Solutions to Address Global Societal Challenges (IUCN, 2016).

  • Castellar, J. A. C. et al. Nature-based solutions in the urban context: terminology, classification and scoring for urban challenges and ecosystem services. Sci. Total Environ. 779, 146237 (2021).

    Article 

    Google Scholar
     

  • Keesstra, S. et al. The superior effect of nature based solutions in land management for enhancing ecosystem services. Sci. Total Environ. 610–611, 997–1009 (2018).

    Article 

    Google Scholar
     

  • Li, H. Enhancing the stability and sustainability of ecosystem. People’s Daily (2022).

  • Séré, G. et al. Soil construction: a step for ecological reclamation of derelict lands. J. Soils Sed. 8, 130–136 (2008).

    Article 

    Google Scholar
     

  • Rokia, S. et al. Modelling agronomic properties of technosols constructed with urban wastes. Waste Manage. 34, 2155–2162 (2014).

    Article 

    Google Scholar
     

  • Rees, F. et al. Storage of carbon in constructed technosols: in situ monitoring over a decade. Geoderma 337, 641–648 (2019).

    Article 

    Google Scholar
     

  • Rodrigues, J. et al. Life cycle impacts of soil construction, an innovative approach to reclaim brownfields and produce nonedible biomass. J. Clean. Prod. 211, 36–43 (2019).

    Article 

    Google Scholar
     

  • Nissim, W. G. & Labrecque, M. Reclamation of urban brownfields through phytoremediation: implications for building sustainable and resilient towns. Urban For. Urban Green. 65, 127364 (2021).

    Article 

    Google Scholar
     

  • O’Connor, D. et al. Phytoremediation: climate change resilience and sustainability assessment at a coastal brownfield redevelopment. Environ. Int. 130, 104945 (2019).

    Article 

    Google Scholar
     

  • Hale, S. E. et al. From landfills to landscapes-Nature-based solutions for water management taking into account legacy contamination. Integr. Environ. Assess. Manag. 18, 99–107 (2022).

    Article 

    Google Scholar
     

  • Greenway, M. Stormwater wetlands for the enhancement of environmental ecosystem services: case studies for two retrofit wetlands in Brisbane, Australia. J. Clean. Prod. 163, S91–S100 (2017).

    Article 

    Google Scholar
     

  • Smetana, S. M. & Crittenden, J. C. Sustainable plants in urban parks: a life cycle analysis of traditional and alternative lawns in Georgia, USA. Landsc. Urban. Plann. 122, 140–151 (2014).

    Article 

    Google Scholar
     

  • Navratil, J. et al. Brownfields do not ‘only live twice’: the possibilities for heritage preservation and the enlargement of leisure time activities in Brno, the Czech Republic. Cities 74, 52–63 (2018).

    Article 

    Google Scholar
     

  • Hu, K. & Pollard, M. Q. Inspired or dystopian, Beijing’s Big Air venue sparks social media debate. Reuters (2022).

  • Maco, B. et al. Resilient remediation: addressing extreme weather and climate change, creating community value. Remediation 29, 7–18 (2018).

    Article 

    Google Scholar
     

  • Wang, F. et al. Technologies and perspectives for achieving carbon neutrality. Innovation 2, 100180 (2021).


    Google Scholar
     

  • Niblick, B. & Landis, A. E. Assessing renewable energy potential on United States marginal and contaminated sites. Renew. Sust. Energ. Rev. 60, 489–497 (2016).

    Article 

    Google Scholar
     

  • Adelaja, S., Shaw, J., Beyea, W. & McKeown, J. C. Renewable energy potential on brownfield sites: a case study of Michigan. Energy Policy 38, 7021–7030 (2010).

    Article 

    Google Scholar
     

  • What is RE-Powering. USEPA https://www.epa.gov/re-powering/what-re-powering (2022).

  • Development of Wind Power Facility Helps Revitalize Rust Belt City (USEPA, 2012).

  • An Old New England Town Lights the Way with Solar (USEPA, 2014).

  • Pandey, V. C., Bajpai, O. & Singh, N. Energy crops in sustainable phytoremediation. Renew. Sust. Energ. Rev. 54, 58–73 (2016).

    Article 

    Google Scholar
     

  • Tripathi, V., Edrisi, S. A. & Abhilash, P. Towards the coupling of phytoremediation with bioenergy production. Renew. Sust. Energ. Rev. 57, 1386–1389 (2016).

    Article 

    Google Scholar
     

  • Pulighe, G. et al. Ongoing and emerging issues for sustainable bioenergy production on marginal lands in the Mediterranean regions. Renew. Sust. Energ. Rev. 103, 58–70 (2019).

    Article 

    Google Scholar
     

  • Saxena, G., Purchase, D., Mulla, S. I., Saratale, G. D. & Bharagava, R. N. Phytoremediation of heavy metal-contaminated sites: eco-environmental concerns, field studies, sustainability issues, and future prospects. Rev. Environ. Contam. Toxicol. 249, 71–131 (2019).


    Google Scholar
     

  • Ni, Z. et al. Comparative life-cycle assessment of aquifer thermal energy storage integrated with in situ bioremediation of chlorinated volatile organic compounds. Environ. Sci. Technol. 54, 3039–3049 (2020).

    Article 

    Google Scholar
     

  • Ni, Z., van Gaans, P., Smit, M., Rijnaarts, H. & Grotenhuis, T. Combination of aquifer thermal energy storage and enhanced bioremediation: resilience of reductive dechlorination to redox changes. Appl. Microbiol. Biotechnol. 100, 3767–3780 (2016).

    Article 

    Google Scholar
     

  • Libera, A. et al. Climate change impact on residual contaminants under sustainable remediation. J. Contam. Hydrol. 226, 103518 (2019).

    Article 

    Google Scholar
     

  • Wild, T., Dempsey, N. & Broadhead, A. Volunteered information on nature-based solutions — dredging for data on deculverting. Urban. For. Urban Green. 40, 254–263 (2019).

    Article 

    Google Scholar
     

  • Erdem, M. & Nassauer, J. I. Design of brownfield landscapes under different contaminant remediation policies in Europe and the United States. Landsc. J. 32, 277–292 (2013).

    Article 

    Google Scholar
     

  • Curran, W. & Hamilton, T. Just green enough: contesting environmental gentrification in Greenpoint, Brooklyn. Local. Env. 17, 1027–1042 (2012).

    Article 

    Google Scholar
     

  • Kabisch, N. et al. Nature-based solutions to climate change mitigation and adaptation in urban areas: perspectives on indicators, knowledge gaps, barriers, and opportunities for action. Ecol. Soc. 21, 39 (2016).

    Article 

    Google Scholar
     

  • Norrman, J. et al. Integration of the subsurface and the surface sectors for a more holistic approach for sustainable redevelopment of urban brownfields. Sci. Total Environ. 563, 879–889 (2016).

    Article 

    Google Scholar
     

  • Loures, L. & Vaz, E. Exploring expert perception towards brownfield redevelopment benefits according to their typology. Habitat. Int. 72, 66–76 (2018).

    Article 

    Google Scholar
     

  • Hou, D. & O’Connor, D. in Sustainable Remediation of Contaminated Soil and Groundwater: Materials, Processes, and Assessment (ed. Hou, D.) 1–17 (Butterworth-Heinemann/Elsevier, 2020).

  • Witters, N. et al. Phytoremediation, a sustainable remediation technology? II: Economic assessment of CO2 abatement through the use of phytoremediation crops for renewable energy production. Biomass Bioenergy 39, 470–477 (2012).

    Article 

    Google Scholar
     

  • Rist, L., Lee, J. S. H. & Koh, L. P. Biofuels: social benefits. Science 326, 1344–1344 (2009).

    Article 

    Google Scholar
     

  • Schüppler, S., Fleuchaus, P. & Blum, P. Techno-economic and environmental analysis of an aquifer thermal energy storage (ATES) in Germany. Geotherm. Energy 7, 1–24 (2019).

    Article 

    Google Scholar
     

  • Lu, H., Tian, P. & He, L. Evaluating the global potential of aquifer thermal energy storage and determining the potential worldwide hotspots driven by socio-economic, geo-hydrologic and climatic conditions. Renew. Sust. Energ. Rev. 112, 788–796 (2019).

    Article 

    Google Scholar
     

  • Barns, D. G., Taylor, P. G., Bale, C. S. & Owen, A. Important social and technical factors shaping the prospects for thermal energy storage. J. Energy Storage 41, 102877 (2021).

    Article 

    Google Scholar
     

  • Hoek, G. et al. A review of exposure assessment methods for epidemiological studies of health effects related to industrially contaminated sites. Epidemiol. Prev. 42, 21–36 (2018).


    Google Scholar
     

  • Swartjes, F. Human health risk assessment related to contaminated land: state of the art. Environ. Geochem. Health 37, 651–673 (2015).

    Article 

    Google Scholar
     

  • Lodge, E. K. et al. The association between residential proximity to brownfield sites and high-traffic areas and measures of immunity. J. Expo. Sci. Environ. Epidemiol. 30, 824–834 (2020).

    Article 

    Google Scholar
     

  • Litt, J. S., Tran, N. L. & Burke, T. A. Examining urban brownfields through the public health ‘macroscope’. Environ. Health Perspect. 110, 183–193 (2002).

    Article 

    Google Scholar
     

  • Technology Screening Matrix. Federal Remediation Technologies Roundtable (FRTR) https://frtr.gov/matrix/default.cfm (2022).

  • Laprise, M., Lufkin, S. & Rey, E. An indicator system for the assessment of sustainability integrated into the project dynamics of regeneration of disused urban areas. Build. Environ. 86, 29–38 (2015).

    Article 

    Google Scholar
     

  • Brown, B. B., Perkins, D. D. & Brown, G. Crime, new housing, and housing incivilities in a first‐ring suburb: multilevel relationships across time. Hous. Policy Debate 15, 301–345 (2004).

    Article 

    Google Scholar
     

  • Gallagher, P. M., Spatari, S. & Cucura, J. Hybrid life cycle assessment comparison of colloidal silica and cement grouted soil barrier remediation technologies. J. Hazard. Mater. 250–251, 421–430 (2013).

    Article 

    Google Scholar
     

  • Papageorgiou, A., Azzi, E. S., Enell, A. & Sundberg, C. Biochar produced from wood waste for soil remediation in Sweden: carbon sequestration and other environmental impacts. Sci. Total Environ. 776, 145953 (2021).

    Article 

    Google Scholar
     

  • Pranjic, A. M. et al. Comparative life cycle assessment of possible methods for the treatment of contaminated soil at an environmentally degraded site. J. Environ. Manage. 218, 497–508 (2018).

    Article 

    Google Scholar
     

  • Sakaguchi, I. et al. Assessment of soil remediation technologies by comparing health risk reduction and potential impacts using unified index, disability-adjusted life years. Clean. Technol. Environ. Policy 17, 1663–1670 (2015).

    Article 

    Google Scholar
     

  • Sanscartier, D., Margni, M., Reimer, K. & Zeeb, B. Comparison of the secondary environmental impacts of three remediation alternatives for a diesel-contaminated site in Northern Canada. Soil. Sediment. Contam. 19, 338–355 (2010).

    Article 

    Google Scholar
     

  • Green Remediation: Best Management Practices for Excavation and Surface Restoration (USEPA, 2019).

  • Suer, P. & Andersson-Skold, Y. Biofuel or excavation? Life cycle assessment (LCA) of soil remediation options. Biomass Bioenergy 35, 969–981 (2011).

    Article 

    Google Scholar
     

  • Pump-and-Treat Ground-Water Remediation. A Guide for Decision Makers and Practitioners (USEPA, 1996).

  • Groundwater Pump and Treat. FRTR https://frtr.gov/matrix/Groundwater-Pump-and-Treat/ (2022).

  • Desorption and Incineration. FRTR https://frtr.gov/matrix/Desorption-Incineration/ (2022).

  • Community Guide to Thermal Desorption (USEPA, 2021).

  • Community Guide to In Situ Chemical Reduction (USEPA, 2021).

  • Stabilization and Solidification of Contaminated Soil and Waste: A Manual of Practice (USEPA, 2015).

  • Handbook for Stabilization/Solidification of Hazardous Wastes (USEPA, 2015).

  • Jin, Y. et al. Integrated life cycle assessment for sustainable remediation of contaminated agricultural soil in China. Environ. Sci. Technol. 55, 12032–12042 (2021).

    Article 

    Google Scholar
     

  • Owsianiak, M., Lemming, G., Hauschild, M. Z. & Bjerg, P. L. Assessing environmental sustainability of remediation technologies in a life cycle perspective is not so easy. Environ. Sci. Technol. 47, 1182–1183 (2013).

    Article 

    Google Scholar
     

  • ISO/PRF 18504 Soil Quality — Guidance on Sustainable Remediation. ISO https://www.iso.org/standard/62688.html (2017).

  • Lesage, P., Ekvall, T., Deschenes, L. & Samson, R. Environmental assessment of brownfield rehabilitation using two different life cycle inventory models. Part 1: methodological approach. Int. J. Life Cycle Assess. 12, 391–398 (2007).


    Google Scholar
     

  • Earles, J. M. & Halog, A. Consequential life cycle assessment: a review. Int. J. Life Cycle Assess. 16, 445–453 (2011).

    Article 

    Google Scholar